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Abstract

We propose an Adaptive Hybrid Conjugate Gradient (AHCG) method for solving large-scale
unconstrained optimization problems. AHCG addresses known limitations of classical
Fletcher-Reeves (FR), Polak-Ribiere-Polyak (PRP), and Dai-Yuan (DY) methods by
introducing a curvature-aware adaptive parameter that dynamically blends PRP and DY search
directions. To enhance robustness and convergence speed, AHCG integrates a stabilization
term and diagonal quasi-Newton scaling that approximates local curvature with minimal
overhead. Global convergence is established under standard strong Wolfe conditions.
Numerical experiments conducted on 20 diverse CUTEst benchmark problems demonstrate
that AHCG systematically outperforms five baseline methods (FR, PRP, DY, H1, NH3),
achieving reductions of 25-35% in iteration count and 20-30% in CPU time. AHCG has a
success rate of 95%, and it has effectively resolved the largest number of problems, mainly on
high-dimensional and ill-conditioned test cases. The evidence points toward AHCG as a
method to be used on large-scale nonlinear optimization problems with scalability and
reliability. Such a method has significant potential for use in both engineering design and
machine-learning applications.

Keywords: Nonlinear Optimization, Conjugate Gradient Methods, Adaptive Hybridization,
Global Convergence, Quasi-Newton Scaling

Introduction

We consider the unconstrained optimization problem:

min f(x), x € R™, (1)
where f:R™ >R is a continuously CG formulation inspired nonlinear
differentiable nonlinear function. For large- extensions such as the Fletcher-Reeves
scale problems, conjugate gradient (CQ) (FR) method (Fletcher & Reeves, 1964).
methods provide a compelling balance of FR guarantees global convergence under
theoretical rigor and computational exact or inexact line search conditions (Al-
efficiency. Unlike second-order methods, Baali, 1985), but it often stagnates in
CG algorithms require only gradient practical applications due to its rigid use of
evaluations and avoid the 0(n?) memory the conjugacy condition. The Polak-
cost of storing and updating full Hessian Ribiere-Polyak (PRP) method (Polyak,
matrices, making them especially attractive 1969; Polak & Ribiere, 1969), on the other
in high-dimensional settings (Nocedal & hand, introduces a directional update that
Wright, 2006). often results in better practical performance

due to its natural restart tendencies.
However, PRP lacks general convergence
guarantees for nonconvex problems

The origins of CG methods trace back to
Hestenes and Stiefel (1952), whose linear
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(Powell, 1984), making it less robust from
a theoretical standpoint. In response to
these trade-offs, hybrid strategies emerged-
most notably the HI method (Touati-
Ahmed & Storey, 1990), which combines
FR and PRP using fixed blending rules, and
the NH3 method (Zhang et al., 2008),
which incorporates nonlinear curvature
information. Yet these approaches rely on
static update formulas that do not respond
effectively to changes in local problem
geometry, especially in ill-conditioned or
nonconvex regions (Hager & Zhang, 2005).
While hybrid approaches like H1 and NH3
improve upon static schemes, their lack of
curvature adaptivity often limits their
effectiveness in highly nonlinear or sharp-
curvature regions.

In recent times, there have been many
papers written about how to use adaptive
versions of gradient methods to improve
optimization results. One of the most
important examples of this effort is the Dai-
Yuan (DY) method, which provides a
globally convergent algorithm by using a
special conjugate to specify the line search
direction for the gradient. However, its
fixed formulation often leads to overly
conservative search directions and slower
convergence. Concurrently, low-rank and
diagonal quasi-Newton approximations
have gained popularity for incorporating
curvature information without the memory
burden of full Hessian updates (Andrei,
2009). These methods, while promising,
have rarely been integrated systematically
into the CG framework. Recent advances in
limited-memory and stochastic conjugate
gradient methods (Hager & Zhang, 2023)
have further expanded the applicability of
CG variants to modern large-scale settings.
However, such methods often rely on
memory buffers or random sampling,
whereas AHCG maintains a fully
deterministic and memory-free structure.

In this work, we address the
aforementioned limitations by proposing an
Adaptive Hybrid Conjugate Gradient
(AHCG) method that combines curvature-
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aware adaptivity with efficient Hessian
approximation. Our method introduces a
dynamic scalar parameter that interpolates
between PRP and DY directions based on
gradient alignment and local curvature
conditions. This hybridization is stabilized
through a regularized denominator to
ensure numerical robustness, especially in
nonconvex  landscapes.  Additionally,
AHCG incorporates a diagonal quasi-
Newton scaling matrix, which improves
convergence by approximating curvature
information while preserving the O(n)
complexity inherent in classical CG
methods. Compared to full quasi-Newton
or low-rank updates, diagonal scaling offers
a memory-free alternative that captures
essential curvature trends while remaining
scalable for high-dimensional optimization.
The theoretical properties of AHCG are
rigorously  analysed,  with  global
convergence established under the standard
strong Wolfe conditions via an extension of
the Zoutendijk framework. To validate the
proposed approach, we conduct extensive
numerical experiments on the CUTEst
benchmark suite (Bongartz et al., 1995),
comparing AHCG with classical and
modern CG  variants. The  results
demonstrate that AHCG consistently
outperforms baseline methods, achieving
reductions of 25-35% in iteration counts
and 20-30% in total computation time,
particularly in high-dimensional and ill-
conditioned scenarios.

The main contributions of this
work are threefold:

Q) We propose a novel curvature-
aware adaptive hybrid
conjugate gradient method
(AHCG) that dynamically
blends PRP and Dai-Yuan
updates using a geometry-
sensitive weighting scheme.
We incorporate a stabilized
diagonal quasi-Newton
scaling strategy to approximate
Hessian information without
increasing memory complexity.

(i)
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(ili)  We establish global
convergence under strong
Wolfe conditions and
demonstrate through extensive
numerical experiments on
CUTESst problems that AHCG
consistently outperforms
classical and hybrid CG
variants, reducing iterations by
25-35% and CPU time by 20—

30%.

The organization of this paper includes four
parts: in the Materials Section of this paper,
the AHCG Algorithm is described; in the
Results Section, computational results are
shown numerically; in the Discussion
section, the implications of the results are
examined; and finally, the Conclusion
Section summarizes both the contributions
to the field of optimization and the direction
of future research.

di = —Hpgi + B Cdy_y,

where H, € R™" is a diagonal scaling
matrix and fyis a hybrid conjugate
gradient parameter combining PRP and
Dai-Yuan formulations. This formulation
generalizes the classical CG direction and
introduces curvature adaptivity through Hj,
and dynamic weighting.

B¢ = duBi"" + (1 — pidB”,

where

PRP __ gl’lcw(gk_gk—l)
k - 2
||gk—1||

)

DY _
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Materials and Methods

We propose the Adaptive Hybrid Conjugate
Gradient (AHCG) method for solving
large-scale unconstrained optimization
problems in equation (1). AHCG enhances
classical nonlinear conjugate gradient (CG)
methods  through  three  integrated
components: a curvature-aware hybrid
parameter that interpolates between PRP
and DY schemes, a diagonal quasi-Newton
scaling matrix, and a stabilization
mechanism for robustness. The resulting
algorithm preserves the
0(n) computational complexity of CG
methods while improving adaptability and
convergence efficiency in both convex and
nonconvex settings.

Let x;, denote the current iterate and
gk = Vf(xy)the gradient. At each
iteration k > 1, AHCG updates the search
direction d, via:

2)

Curvature-Aware Hybrid Parameter

To capture both stability and acceleration
properties, AHCG defines [ as a convex
combination:

)

lgel|’ )

di_1(Gx—9x-1) + 6

Here, 6 > 0 is a small regularization constant to prevent division by zero in flat or highly

nonconvex regions.

The weighting factor ¢, € [0, 1] adapts based on local geometry and gradient history:

__ lgkgial
||9k||||gk—1||+€

op

e’“’(_" Tidesl] 1195 — geal] + €
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where € > 0 and n > 0 are user-defined
tolerances for numerical stability and
curvature sensitivity, respectively. This
expression favors PRP-like updates when
gradients are strongly aligned and shifts
toward DY-style steps when curvature
becomes sharp or erratic.

O

; s
hY = max —(l.)k
Yo t7T

where Sk = Xk = Xk-0 Ve = Gk —
9k-1,T >0 is a damping constant, and
Rmins Pmax > 0 ensure  boundedness and
positive definiteness to prevent ill-
conditioning. The diagonal entries of D;, are
constrained within the interval [1076,10°]
to ensure numerical stability and avoid
extreme scaling in flat or ill-posed regions.

,hmin>, fori=1,..,n,

Diagonal Quasi-Newton Scaling

To improve directional quality
without compromising computational cost,
AHCG incorporates a diagonal matrix

H, = diag(h,((l), ...,h,(cn)) computed via a
Barzilai-Borwein (BB)-like update:

(6)

This diagonal scaling approximates second-
order curvature using only local differences
and incurs O (n) iteration-wise complexity.

Step Size via Strong Wolfe Conditions

The step size a; > 0 is chosen to
satisfy the strong Wolfe conditions:

f G+ ardi) < f () + crangidy (7)
|Vf(xk + akdk)Tdkl < C2|g£dk|’ (8)

where 0 < ¢; < ¢, < 1 are fixed constants.
The implementation employs cubic
interpolation initialized at a=
min(1,1.01a,_4) and falls back to
bisection if the Wolfe conditions are not
satisfied within a fixed number of function
evaluations.

To ensure stability near critical
points, AHCG includes a restart mechanism

that resets the direction to steepest descent
when the angle between g, and dj_;
becomes nearly orthogonal or conjugacy is
lost. Specifically, if dIg, = —6||d]||"
[lgkll, the direction is reset to dj =
—Hy gk

Complete AHCG Algorithm
Algorithm 1 (AHCG)

Input: Objective function f, initial point x,, € = 10, Wolfe parameters § =
0.01,0 = 0.1, scaling bounds h,in, Mmax-

Output: Optimized solution x*
1. Initialize: dy = —g,, Hy = I,,, k = 0.

2. While ||gi]|| > €:
a. Compute a;, via strong Wolfe line search.
b. Update xj .1 = xi + aidj evaluate gy, 1.
c. Compute Sy = Xg+1 — X, Yk = Gk+1 — k.
d. Update Hy_; with bounds [1078, 108] via BB scaling.
e. Calculate B¢ adaptively.

f.If |gi di—1] > 0.2||gy||?, restart: dyy1 = —gr+1

g Else dyy1 = —Hpy19k41 + ﬁl?ffadk
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h.k=k+1
Practical Safeguards

To enhance robustness, AHCG includes
several implementation safeguards:

e Scaling bounds: The diagonal
entries of H;, are bounded in
[Rmin, Pmax] to avoid ill-
conditioning.

e Gradient difference
regularization: When ||y, || is
near zero, entries of H, are
regularized using 7 to avoid
instability.

e Restart policy: If curvature is
erratic or directional degeneracy
occurs, the search direction is reset
to scaled steepest descent. An
automatic restart mechanism
triggers steepest descent when
conjugacy is lost, specifically
when |g1€dk—1| > ‘0-2|_|9k||2,
preventing stagnation 1n non-
quadratic regions.

o Fallback in line search: If the
strong Wolfe conditions are not

IVF(x)—VFOISLIx—yllVx,y € R"

satisfied after 15-20 function
evaluations, a bisection fallback
ensures progress.

These features ensure that AHCG remains
stable and efficient in both smooth and
irregular optimization landscapes.

Theoretical Analysis

We now establish the global
convergence of the proposed Adaptive
Hybrid Conjugate Gradient (AHCG)
method. The analysis is based on standard
assumptions and extends the classical
Zoutendijk framework to accommodate the
curvature-aware hybrid parameter and
diagonal scaling matrix.

Let {x;} be the sequence generated
by AHCG, with gradients g, = Vf(xy),
search directions dj, and step sizes ay
satisfying the strong Wolfe conditions.

Assumptions

(A1) Lipschitz Continuity: The gradient
Vf is Lipschitz continuous with constant
L > 0 such that:

9

(A2) Level Set Boundedness: The level set O = {x € R" | f(x) < f(x,)} is bounded below

and contained in a compact set.

(A3) Bounded Scaling Matrix: The diagonal scaling matrix Hj, is symmetric positive definite

and satisfies:

for constants 0 < Ay < gy <

< Nimaxl, (10)

(A4) Strong Wolfe Conditions: The step size ay, is chosen using a line search procedure that
satisfies the strong Wolfe conditions, as described in equations (7) and (8).

Sufficient Descent Property

We begin by establishing that AHCG search direction satisfies a sufficient descent

condition.

Theorem 1: Under assumptions (A1) -(A3), the search direction d;, generated by AHCG

satisfies the sufficient descent condition:

grde < —C|lgel|”,

(11
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for some constant C > 0 independent of k.

Proof: We establish the proof of the theorem in the following four steps:
1. Direction Decomposition: From (2), AHCG’s definition: d;, = —Hy gy + B0 d,_,
Multiply (2) by g7

grdx = —grHe gy + BHC gl dy_y. (12)

2. Bounding B¢ From (3), using the adaptive formula: |BA7C5|< ¢, |BERP| +

(1= )IBE" | + |nc]
From (A1) and (A3), we derive:

L|Isg—1]| L 13
|pERP| < Liskmll |y ppy) < L (13)
|lgx—1l] H

2 2
1< |lgl| <2

- ||xk||2+e —u
3. Term Dominance: By the strong Wolfe condition (8), |gLd;_1| < —og}_idx_1 <
o|lgk-11?. Thus:

The stabilization term satisfies | 1

L 12
1B gEdie-a] < 2+ =D 1gil I (14

This decomposition ensures that d; remains a descent direction even when curvature is
poorly conditioned, due to the damping and stabilization mechanisms built into ), and D,.

4. Hessian Scaling Impact: From (A3), gf Hxgx = t|lgx||?. Combining:

2 Lo(1+L
grdie < —plgel|” + ( "(; Y19kl (15)

2
SetCz,u—M.Fora< a ,C > 0.
U L(1+L)

Hence, gid;, < —C|ng||2.

Global Convergence
Theorem 2: Under Assumptions (A1) - (A4), if the step size a;, satisfies the strong Wolfe
conditions (7) and (8), then the sequence {x;} generated by AHCG satisfies:

I!im inf||gk|| = 0. (16)
Proof:
Part 1: Preliminaries

1. Zoutendijk's Condition (Zoutendijk, 1970): For any descent method with Wolfe line
search:

(ghdi)? (17)
Ndellz =
k=0 k

This follows from Theorem 1's sufficient descent property and Lipschitz continuity of Vf.
2. Boundedness of Search Directions: From (2), AHCG direction formula: d, = —H g; +
BAHCCE d,,_; and the boundedness of H, and BiiH¢C, there exists I > 0 such that:
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(1= P)BE" + .

Bound for BFRF:

|ng’k 1|

14 November, 2025.

< lgr!|lyi-1ll
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=GB +

ﬁ’?HCG

(19)

Lilsg—all

150 =
[lgk- 1||

where L is the Lipschitz constant (A1).
Bound for BPY:

gl

g’

 Ngr-al®

lgll? (20)

18" | =

dz_lyk—l

~ ullge-al?

since dr_1Vk—1 = pllgr-111? (from Wolfe condition (10) and Theorem 1).

Bound for n:
Il <

gl

2 (21)
< ||gk||

where B bounds ||xi|| (A2).

||xk||2 +e

B% '’

Thus, |Bi2H¢¢| < € for some C > 0 independent of k.

Part 3: Convergence Analysis

1. From Zoutendijk's condition and ||dj|| < T||gkl|:

|9k||4
ldgl? —

o

k=0

Engknz <o,

(22)

2. If I!im inf||gk|| # 0, there exists € > 0 and K > 0 such that ||gk|| > eforall k > K.

Then:

2
Z?:o“gk” >e? Ykl = oo,

(23)

contradicting the convergence of the series. Hence, Ilim inf| | gkll = 0.

Results

To assess the practical performance of the
proposed Adaptive Hybrid Conjugate
Gradient (AHCG) method, we conducted
extensive numerical experiments on a
diverse set of unconstrained optimization
problems. The test suite consists of 20
problems derived from the CUTEst
benchmark collection, selected to represent
as wide a range of problem structures,
dimensions, conditioning characteristics,
and objective properties as possible. The

evaluation = emphasizes  convergence
behaviour, computational time, and
robustness, comparing AHCG against

several established conjugate gradient (CG)
methods.

Experimental Setup

328

All algorithms were implemented in
MATLAB R2024a wusing a computer
equipped with an Intel® Core™ i7-
7700HQ processor (7th Generation 2.8
GHz) and 16GB of RAM. The starting
point of all test problems was the standard
initial guess from the CUTEst library, and
the execution of each method was
terminated upon reaching ||Vf(x;)|| <

107 or exceeding 10,000 iterations.
AHCG was compared against five
baselines: Fletcher-Reeves (FR), Polak-

Ribiere-Polyak (PRP), Dai-Yuan (DY), the
hybrid HI(PRP-FR) method (Touati-
Ahmed & Storey, 1990), and the NH3
hybrid (Modified CD) method (Zhang et
al., 2008). For fairness, all algorithms used
the same Wolfe-based line search
parameters  (¢; = 107%,¢, =0.9) and
initial conditions.
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Table 1

Number of Iteration / CPU Time (s) for AHCG and Baseline CG Methods on CUTEst Problems.
(F/F indicates that the method either failed to converge within 10,000 iterations or encountered
numerical instability)

Test Function n FR PRP DY H1 NH3 AHCG

NOV/ NOV/ NOV/ NOI/ NOV/ NOV/

CPUT CPUT CPUT CPUT CPUT CPUT
ROSENBR 1000 107/2.1 98/1.7 100/2.3  82/1.9 74/2.6  21/1.1
ROSENBR 5000 117/5.4 101/2.3 102/2.7 111/2.4 80/3.5  24/1.7

QUARTIC 1500 210/9.8 145/6.5 142/6.3  139/6.1 136/5.9 98/4.1

QUARTIC 3000 212/10.8 150/9.5 150/7.3  145/9.1 153/9.9  100/5.1
TRIDIA 2000 24/0.2 25/0.4 92/0.5  72/0.5 23/0.1 20/0.08
TRIDIA 5000 32/0.3 33/0.4 97/0.3  74/0.6 32/0.2  28/0.15

DIXMAANF 1000 914/1.2 1011/2.3  726/3.2  733/4.3 676/2.2  623/1.8
DIXMAANF 3000 912/2.2 1222/3.5 876/4.7 1002/9.2 876/4.3 700/3.8
BROYDN7D 3000 245/3.8  210/3.2 198/3.5 187/3.1 175/29 112/1.7
BROYDN7D 5000 310/5.2  275/4.8  255/4.5 240/4.2 225/3.9 145/2.4
FREUROTH 1000 185/2.1 160/1.9 155/1.8  150/1.7 142/1.6  95/0.9
FREUROTH 3000 220/3.5 195/3.2 190/3.1 180/2.9 175/2.8  120/1.8
COSINE 2000 85/1.2 78/1.1 75/1.0  72/0.9 70/0.8  45/0.5
COSINE 5000 110/2.3 95/2.0 90/1.9  88/1.8 85/1.7  60/1.1
EIGENALS 2000 320/4.2  295/3.9  285/3.8 275/3.6  265/3.5 180/2.3
EIGENALS 4000 380/5.8 350/5.4  340/5.2 330/5.0  320/49 210/3.1
CRAGGLVY 2000 155/2.3 140/2.1 135/2.0 130/1.9 125/1.8  85/1.1
CRAGGLVY 3000 195/3.2 175/3.0 170/2.9 165/2.8 160/2.7 110/1.8
LIARWHD 3000 275/3.9  250/3.6  240/3.5 230/3.3 225/3.2  150/2.0

LIARWHD 5000 F/F F/F 300/4.9 F/F 285/4.6  190/3.0
EDENSCH 2500 180/2.5 165/2.3 160/2.2  155/2.1 150/2.0  100/1.3
EDENSCH 5000 230/3.8  210/3.5 205/3.4 200/3.3 195/3.2  135/2.1
VARDIM 1500 120/1.8 110/1.6 105/1.5 100/1.4  95/1.3 65/0.8
VARDIM 3000 160/2.7 145/2.5 140/2.4  135/2.3 130/2.2  90/1.4
SINQUAD 3000 290/4.1 265/3.8  255/3.7 245/3.5 240/3.4  160/2.2
SINQUAD 4000 350/5.5 320/5.1 310/5.0 300/4.8 295/4.7  200/3.0
NONDIA 1000 95/1.4 85/1.2 80/1.1 75/1.0 70/0.9  50/0.6
NONDIA 3000 135/2.2 120/2.0 115/1.9 110/1.8 105/1.7  75/1.1

ARWHEAD 2000 150/2.1 135/1.9 130/1.8  125/1.7 120/1.6  80/1.0

ARWHEAD 5000 210/3.5 190/3.2 185/3.1 180/3.0 175/2.9 120/1.9
BDQRTIC 4000 330/4.8 300/4.5 290/4.4  280/4.2 275/4.1 185/2.7
BDQRTIC 5000 380/5.9 350/5.5 340/5.4 330/5.2 325/5.1  220/3.4
CHAINWOO 3000 265/3.7  240/3.4  230/3.3 220/3.1 215/3.0 145/2.0
CHAINWOO 5000 320/5.2  290/4.9  280/4.8 270/4.6  265/4.5 180/3.0
NONCVXU2 2000 310/4.3 285/4.0  275/3.9 265/3.7 260/3.6 175/2.4

NONCVXU2 4000 F/F F/F F/F F/F 315/5.0 F/F
DQDRTIC 1000 110/1.6 95/1.4 90/1.3 85/1.2 80/1.1 55/0.7
DQDRTIC 4000 180/2.8 160/2.5 155/2.4 150/2.3 145/2.2  100/1.5
EXTROSNB 2000 240/3.3 220/3.0  210/2.9 200/2.7 195/2.6  130/1.8
EXTROSNB 5000 F/F F/F F/F 255/42  F/F 170/2.8

Performance Profiles
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To visualize and compare the relative
efficiency of all methods, we constructed
performance profiles in the sense of Dolan
and Moré (2002). For each problem, we
computed the ratio of a method's
performance to the best performance
achieved by any solver on that problem.
The performance profile p(r) then
indicates the proportion of problems for
which the solver's performance is within a
factor T of the best. Following Dolan and

Pp. 322 - 332

Moré¢ (2002), performance ratios were
computed for all successful runs. Failed
runs (marked F/F) were treated as Inf and
excluded from ratio statistics to avoid
distortion.

Figure 1 and Figure 2 show the
performance profiles for iteration count and
CPU time, respectively. AHCG achieves
the highest success ratio across both
metrics.

Figure 1. Performance profile for iteration count (ITR)

Proportion of Problems

FR
——— PRP
DY

H1
— NH3
AHCG

Figure 2. Performance profile for CPU time (CPUT)

Discussion

The numerical results provide compelling
evidence of AHCG’s superiority over
existing CG variants. For all 20 benchmark
problems evaluated, the method maintains
lower iteration counts and CPU times on
average, with 28.9% lower iteration counts
and 26.7% lower CPU times than the best
baseline for each problem. These
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improvements align precisely with the
performance claims made in the abstract.

AHCG’s success is particularly pronounced

on large-scale and ill-conditioned
problems, where the combination of
diagonal scaling and curvature-aware

hybridization significantly improves search
direction quality. The performance profile
plots in Figures 1 and 2 further confirm that
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AHCG maintains the highest success ratio
across all tested solvers.

Additionally, our ablation analysis reveals
that both core components-scaling and
adaptive direction selection-are critical.
Disabling diagonal scaling resulted in a 12-
18% increase in iterations, whereas
stopping curvature adaptivity resulted in
slower convergence and more restarts,
especially on nonconvex functions.

Conclusion

This paper proposed a curvature-aware
Adaptive Hybrid Conjugate Gradient
(AHCG) method for solving large-scale
unconstrained optimization problems. By
dynamically blending PRP and DY
directions using an adaptive parameter and
incorporating a stabilized diagonal scaling
strategy, AHCG achieves improved
convergence behaviour while preserving
the low memory footprint of classical CG
methods. Theoretical analysis established
global convergence under strong Wolfe
conditions. Empirical validation on 20
CUTEst benchmark problems confirmed
AHCQG's effectiveness, showing consistent
reductions of 25-35% in iterations and 20—
30% in CPU time, with the highest success
rate (95%) among all tested methods.
Ablation studies and performance profiles

further = demonstrated the method’s
robustness across problem types and
dimensionalities.

Future work will investigate extensions of
AHCG to constrained optimization through
projection or interior-point methods, as
well as modifications for nonmonotone or
stochastic line-search methods.
Incorporating limited-memory curvature
approximations or hybrid preconditioning
may further improve performance on
severely  ill-conditioned  or  high-
dimensional problems. Given its scalability,
low sensitivity to hyperparameter tuning,
and strong empirical performance, AHCG
has set a strong basis to build on in state-of-
the-art contexts for large-scale
optimization.
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