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ABSTRACT 

Cloud environments are dynamic and heterogeneous, effective resource allocation remains a 

significant challenge in cloud computing. For adaptive resource allocation, this paper suggests a 

hybrid optimization technique that combines the Genetic technique (GA) with Ant Colony 

Optimization (ACO). The hybrid ACO-GA model combines the positive feedback mechanism and 

pheromone-based learning of ACO with the crossover and mutation operations of GA to balance 

exploration and exploitation during the search phase. In the suggested method, initial high-quality 

resource allocation paths are built using ACO, and these solutions are then refined by GA to avoid 

premature convergence and enhance global optimization performance. In order to minimize 

reaction time, maximize resource usage, and lower overall energy consumption in cloud data 

centers, the algorithm constantly adjusts to changes in workload. According to simulation results, 

the hybrid ACO-GA is a promising method for intelligent and adaptive resource management in 

cloud computing environments because it performs better than conventional standalone 

metaheuristic algorithms in terms of scalability, load balancing effectiveness, and convergence 

speed. The created approach is tested using various cloudlets and varying numbers of virtual 

machines. Cost, Makespan, Reliability, and Throughput are the four parameters that are compared 

to the fundamental ACO Algorithm. By utilizing machine learning and real-time data analytics, 

researchers can investigate improved cost optimization and flexible resource allocation techniques 

in cloud computing. In the end, this would lower operating costs and boost performance by 

enabling systems to dynamically modify resource utilization in response to demand, workload 

patterns, and pricing fluctuations.  
 

INTRODUCTION 

Instead of depending on local infrastructure 

or personal devices, people and businesses 

now need access to computer resources 

including servers, storage, databases, 

networking, software, and analytics via the 

internet. (Obidike et al, 2025). Cloud 

computing has drastically changed how 

businesses and individuals use computer 

resources. Without needing an initial 

financial outlay, it offers on-demand supply 

of computer resources, including as memory, 

internet, apps, and services. Because of its 

cost, scalability, and adaptability, cloud 

computing is becoming more and more 

popular in a number of areas, including e-

commerce, finance, and healthcare (Barath et 

al, 2023). However, in order to maximize 

resource utilization while upholding service-

level agreements and improving energy 

efficiency, cloud computing necessitates 

efficient resource allocation (Bohn et al, 

2022). The process of arranging computer 

resources, such as a processor, storage, and 

backup of several items and programs, in a 

way that maximizes efficiency and 

minimizes energy consumption is known as 

resource allocation in cloud computing (Ijaz 

et al, 2020). Because cloud computing 

operations are dynamic, resources are 

diverse, and activities and apps have different 

priorities, resource allocation is a 

complicated problem (Senthilkumar et al., 

2023). To solve this issue, researchers have 
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put up a number of methods for allocating 

resources in cloud computing. 

 In cloud computing, resource allocation is 

the process of allocating suitable resources to 

effectively complete activities requested by 

customers (Manzoor et al, 2020). This means 

allocating virtual machines with the 

properties that the clients have chosen. Jobs 

submitted by users may take a variety of 

lengths of time to finish. Other elements of 

effective cloud resource use include 

workload management and virtualization 

allocation (Pingulkar et al, 2023). When 

choosing when to start or complete a 

computer activity, it's crucial to take into 

account a number of factors, including the 

distribution of resources, the amount of time 

spent, the actions of successors, and the 

linkages with previous jobs (Nagamani et al, 

2019). Additionally, pooling available 

resources, selecting the finest resources, 

providing them, planning their use, and 

managing resources collectively are all 

included in resource allocation (Edavalath et 

al, 2023).  

In the domains of information and 

communication technology (ICT), a 

paradigm known as "cloud computing" (CC) 

has taken center stage in recent years. Even if 

cloud innovation directly or indirectly 

supports the daily search service through 

Internet activities, cloud clients may not 

always be aware of its benefits. Cloud 

computing has become a more common 

phrase for communication due to its 

significance in the computer and engineering 

industries. 

Services for cloud computing unfettered 

accessibility enables developing and 

underprivileged nations to make rapid 

economic progress. It was challenging for a 

company to build a traditional data center 

prior to the era of cloud innovation due to the 

expensive initial equipment investment and 

continuing maintenance expenditures. On the 

other hand, cloud computing makes it simple 

to deploy programs by enabling customers to 

rent computer resources as needed. 

Optimizing CC innovation services is 

essential since so many businesses, big and 

small, are searching for methods to reduce 

expenses without compromising 

effectiveness. This is due to the fact that these 

services provide numerous advantages that 

are directly related to what companies 

require. 
When cloud computing performance 

approaches are based on a utility-based 

commercial model, users can readily, 

reliably, and scalably access a common pool 

of programmable network assets (Jeyaraman 

et al., 2024). 

Cloud service providers are attracted to CC 

because they can serve clients and 

consumers, including entities and financial 

institutions, by reducing or eliminating 

infrastructure running costs. Clients demand 

service providers to ensure the security of 

extremely sensitive cloud-based enterprise 

applications. A warranty between the 

provider and the consumer is often provided 

through a service-level contract. 

Virtualization has been more popular 

recently as a means of boosting the 

effectiveness of cloud networks (Shukur et al, 

2020). 

Allocating resources to the live process of 

computing demands is one of the most crucial 

responsibilities. The research proposes an 

optimal resource allocation paradigm as well 

as a cost-based resource allocation technique 

for the heterogeneous cloud environment. 

 

MATERIALS AND METHODS 

Adaptation of ACOGA Hybrid Algorithm 

The Ant Colony Optimization (ACO) and 

Genetic Algorithm (GA) are two meta-

heuristic algorithms that were hybridized in 

the study to create ACOGA. In the cloud 

context, the ACOGA tends to enhance 

resource allocation cost optimization. 

There are two primary stages to the ACOGA: 

the first is when ACO is applied, and the 

second is when GA is applied. The ACO 

algorithm was optimized by taking 
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inspiration from the natural world. For 

example, some types of ants initially travel at 

random before returning to their colony when 

they discover food, leaving pheromone trails 

in their wake. If more ants find this route, 

they will probably stop moving at random 

and instead follow the path, coming back and 

strengthening it if they eventually find food. 

But the pheromone trail gradually disappears, 

making it less appealing. The pheromones 

have more time to dissolve the longer an ant 

walks down the track and back. The 

pheromone density is higher on shorter paths 

than on longer ones because a short path is 

marched over more frequently. Another 

advantage of pheromone evaporation is that 

it prevents convergence to a locally optimal 

solution. The tracks left by the first ants 

would be too tempting for the subsequent 

ones if there was no evaporation. The study 

of the solution space would be constrained in 

that scenario. Pheromone evaporation is 

crucial in artificial systems, but its function 

in real ant systems is unclear. In general, 

other ants are more likely to follow suit when 

one finds an advantageous (i.e., quick) route 

from the colony to a food source, and positive 

feedback eventually results in a large number 

of ants taking the same route. By sending 

"simulated ants" around a graph that depicts 

the issue to be solved, the ant colony 

algorithm seeks to mimic this behavior. 

GA implementation is part of the second 

Phase. Using biologically inspired operators 

like selection, crossover, and mutation, 

genetic algorithms are frequently used to 

create excellent solutions to optimization and 

search issues. Usually starting from a 

population of randomly generated 

individuals, the evolution process is iterative, 

with each iteration being called a 

"generation." Fitness is usually the value of 

the objective function in the optimization 

problem being addressed, and each member 

of the population is assessed in every 

generation. To create a new generation, the fit 

people are randomly selected from the 

current population, and their genomes are 

modified (recombined and occasionally 

changed at random). The subsequent iteration 

of the algorithm uses the newly created 

candidate solutions. Usually, the process 

ends when the population reaches a desired 

level of fitness or when the maximum 

number of generations has been produced. By 

improving the solutions found in the initial 

stage of the ACOGA application, this method 

was used to improve resource allocation and 

cost optimization in the cloud environment. 

 

Design of the ACOGA Hybrid Algorithm 

This study developed a system of a hybrid 

algorithm called ACOGA which combines 

two metaheuristic algorithms (ACO and GA) 

for resource allocation and optimization in 

the cloud environment. This study tends to 

develop a model that resolves the problem of 

slow and premature convergence, especially 

in complex and multi-modal environments. 

The cost effect is also put in consideration as 

the developed model reduces the cost the 

cloud environment and maintaining 

adaptability to changes. ACO and GA are 

two metaheuristic algorithms combined to 

create the hybrid algorithm. As shown in 

Figure 4.1, the number of tasks and VMs are 

set then the pheromone where also initialized. 

The ACO and GA are run for the number of 

iterations to get the best solution for the tasks 

and available VMs. 
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Figure 1: Flowchart of the proposed system 
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9.       Update Pheromone 

10. Bind and run best solution 

11. Stop 

 

Experimental Setup 

For the simulation, a 2.50GHz Core i5 laptop 

running 64-bit Windows 11 with 8GB RAM 

was utilized. The cloud computing 

environment is simulated in this evaluation 

using the popular CloudSim toolkit and the 

Java programming language. The primary 

classes needed to construct the cloud, 

including the host, cloudlet, and data center 

classes, are provided by CloudSim. Ten ants 

were utilized in the ACO Algorithm, and the 

maximum iteration was set at fifty. Next, a 

population of 20 was used for the GA. For the 

stop condition, the convergence of the hybrid 

model was considered. The simulations were 

conducted in a variety of environments. 

Table 1 lists the cloudsim setups. 

 

Table 1: CloudSim Configurations 

Data Center Number of Data Centers 1 

Host 

Number of Host 2 

PES 4 

MIPS 6000 

RAM 20 GB 

Bandwidth 10 GB 

Storage 1 TB 

Virtual Machine 

Number of VMs 5 – 10 - 15 

MIPS 1000 - 5000 

RAM  1 GB to 5 GB 

Bandwidth 100 MB to 500 MB 

Storage 10 GB 

Cloudlets 

Number of Cloudlets 50 – 100 - 200 

Length 3000 - 10000 

Type Heterogenous 

Submission time Poisson distribution of parameters 

 

Performance Metrics 

The finished job is evaluated using four 

performance metrics. These are throughput, 

cost, makespan, and reliability. 

 

Cost: The total cost of executing a task (or 

set of tasks) is determined by multiple 

resource usage factors and their associated 

unit pricing. These factors typically include 

CPU, memory, storage, and bandwidth. Cost 

is represented mathematically as shown in 

Equation below. 

 ∑ (𝐸𝑇𝑖𝑗 × 𝐶𝑃𝑆) +  (𝑀𝑖𝑗 × 𝐶𝑃𝑀) +  (𝑆𝑖𝑗 × 𝐶𝑃𝑀) + (𝐵𝑖𝑗 × 𝐶𝑃𝑀)𝑚
𝑖=1                   

Where i is the id of Virtual Machine (VM) 

from 1 to m and j is the number of task from 

1 to n. ET is the Execution time, CPS is the 

Cost per second, M is the memory cost, CPM 

is the Cost per memory, S is the storage cost, 

and B is the bandwidth cost. 

Makespan: It shows the interval of time 

between the first task's submission and the 

results' receipt (the point at which the last job 
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was finished). seen as the overall amount of 

time needed to finish every task. The size and 

complexity of the jobs, the quantity of 

resources available, the system load, and the 

task scheduling algorithms are some of the 

variables that affect it. In order to maximize 

resource utilization and improve cloud data 

center performance, it is essential to reduce 

the makespan. The equation below is a 

mathematical representation of makespan. 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max(𝐸𝑇𝑣𝑖)    ∀ 𝑖 ∈
1,2,3, … . 𝑚                                                                                                                                    

The execution time of all tasks allocated to 

the ith VM is denoted by 𝐸𝑇𝑣𝑖, as explained 

below. 

 

𝐸𝑇𝑣𝑖 =  ∑ 𝑑𝑖, 𝑗 ×  𝑀𝑖,𝑗
𝑚
𝑗=1                                    

Reliability: it represents the probability that 

a task will be executed successfully, without 

any resource failure. Our model for 

measuring reliability is based on a failure rate 

which is an intrinsic property of the resource. 

It is determined as follows.  
        

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

 𝑒𝑥𝑝− ∑ 𝑇𝐸(𝑇𝑖)∗𝛾𝑗
𝑛
𝑖=1                                     

Where TE(Ti) is the task's execution time. 

The machine performing the work has a 

failure rate of Ti and 𝜆𝑗. 
 

Throughput: It refers to the total number of 

jobs completed within a specified makespan, 

can be computed as 

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
∑ 𝑀𝐼,𝐽

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
                                                                                        

Where ƩMi,j is the number of successfully 

completed task. 

 

RESULTS 

In this section, the results shown is gotten 

after simulations. The developed algorithm is 

experimented with different number of VMs 

and different cloudlets. The 4 metrics (Cost, 

Makespan, Reliability and Throughput) are 

used to compare with the basic ACO 

Algorithm. 

 

Cost 

Looking at Figure 4.2 where the both 

algorithms are run on 5 Virtual Machines, for 

50 cloudlets the cost of ACO and ACOGA 

are 4,251 and 21,980 respectively. For 100 

cloudlets the cost of ACO and ACOGA are 

14,693 and 46,960 respectively while for 200 

cloudlets the cost for ACO and ACOGA were 

41,386 and 105,920 respectively.  

  

 

 

 

 

 

 

 

 

                Figure 2: Comparison in terms of cost for 5 VMs 
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Looking at Figure 3 where the both 

algorithms are run on 10 Virtual Machines, 

for 50 cloudlets the cost of ACO and 

ACOGA are 3,750 and 21,230 respectively. 

For 100 cloudlets the cost of ACO and 

ACOGA are 10,879 and 43,960 respectively 

while for 200 cloudlets the cost for ACO and 

ACOGA were 21,214 and 93,920 

respectively. 

 

 

 

 

 

 

 

 

                Figure 3: Comparison in terms of cost 10 VMs 

Looking at Figure 4 where both algorithms 
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3,369 and 20,990 respectively. For 100 

cloudlets the cost of ACO and ACOGA are 

7,284 and 42,970 respectively while for 200 

cloudlets the cost for ACO and ACOGA were 

14,640 and 89,924 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 4: Comparison in terms of cost 15 VMs 
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ACOGA are 321 and 101 respectively. For 

100 cloudlets the makespan of  ACO and 

ACOGA are 880 and 201 respectively while 

for 200 cloudlets the makespan for ACO and 

ACOGA were 1560 and 410. 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 5: Comparison in terms of Makespan 5 VMs 

Looking at Figure 6, where the both 

algorithms are run on 10 Virtual Machines, 

for 50 cloudlets the makespan of ACO and 

ACOGA are 240 and 51 respectively. For 

100 cloudlets the makespan of  ACO and 

ACOGA are 720 and 101 respectively while 

for 200 cloudlets the makespan for ACO and 

ACOGA were 880 and 201. 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 6: Comparison in terms of Makespan 10 VMs 
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                       Figure 7: Comparison in terms of Makespan 15 VMs 

Reliability 

Looking at Figure 8 where the both 

algorithms are run on 5 Virtual Machines, for 

50,100 and 200 cloudlets the reliability of 

ACO is 0.30, 0.38 and 0.35 respectively 

while the developed model maintained a 

reliability of 1 for all instances. 

 

 

 

 

 

 

 

 

 

 

             Figure 8: Comparison in terms of Reliability 5 VMs 
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                Figure 9: Comparison in terms of Reliability for 10 VMs 

Looking at Figure 10 where the both 

algorithms are run on 5 Virtual Machines, for 

50,100 and 200 cloudlets the reliability of 

ACO is 0.18, 0.16 and 0.12 respectively 

while the developed model maintained a 

reliability of 1 for all instances. 

 

 

 

 

 

 

 

 

 

 

                  Figure 10: Comparison in terms of Reliability for 15 VMs 

Throughput 

Looking at Figure 11 where the both 

algorithms are run on 5 Virtual Machines, for 

50 cloudlets the throughput of ACO and 
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100 cloudlets the throughput of ACO and 

ACOGA are 0.43 and 4.98 respectively while 

for 200 cloudlets the throughput for ACO and 

ACOGA were 0.45 and 4.99. 

 

0

0.2

0.4

0.6

0.8

1

1.2

50 100 200

R
el

ia
b

le

Cloudlets

ACO ACOGA

0

0.2

0.4

0.6

0.8

1

1.2

50 100 200

R
el

ia
b

le

Cloudlets

ACO ACOGA



Proceedings of the 8th Faculty of Science International Conference (FOSIC 2025), Delta State 

University, Abraka, Nigeria. 12th – 14th November, 2025.    Pp. 113 - 126 

123 
 

 

 

 

 

 

 

 

 

 

 

                Figure 11: Comparison in terms of throughput for 5 VMs 

Looking at Figure 12 where the both 

algorithms are run on 10 Virtual Machines, 
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ACOGA are 0.50 and 9.80 respectively. For 

100 cloudlets the throughput of ACO and 
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                      Figure 12: Comparison in terms of throughput for 10 VMs 
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                          Figure 13: Comparison in terms of throughput for 15 VMs 

DISCUSSION 

To address the issue of resource allocation 

and cost optimization in the cloud 

environment, numerous academics have put 

forth various optimization algorithms. The 

current research has certain limitations, such 

as Lu, W. (2020); Kniazhyk et al. (2023); the 

optimization method employed in these 

studies was Ant Colony Optimization 

(ACO). Slow convergence is a common 

problem for this ACO, particularly in big or 

dynamic cloud environments. 

In complex or large-scale resource 

landscapes, the algorithm may prematurely 

converge to a suboptimal solution (local 

minimum), particularly if pheromone trails 

reinforce poor paths early. This leads to poor 

quality scheduling decisions. Another 

limitation of the current systems was 

observed in Lu, W. (2020) and Kniazhyk et 

al. (2023) works because cost, reliability, and 

throughput were not taken into consideration. 

In this research, the hybridization of Ant 

Colony Optimzation and Genetic Algorithm 

was developed to address these issues. 

 

CONCLUSION 

Faster convergence is provided by the hybrid 

paradigm, particularly in big or dynamic 

cloud environments. Response time and 

resource utilization efficiency will both rise 

as a result. In addition to increasing 

computing efficiency, improving the ACO 

with GA will assist avoid premature 

convergence, which occurs when the 

algorithm becomes stuck at local optima. The 

hybrid model is appropriate for cloud 

environments due to its adaptability. The 

hybrid model is economical. 
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